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A further refinement of the Howard-Kochar-Jain theorem is given which allows the 
estimation of the range of complex wave velocity for growing perturbations in a 
stratified shear flow. According to the results obtained, the boundary of this region 
depends both on the minimum Richardson number and on the wavenumber of the 
perturbations. The effect of external boundaries on the stability of parallel flows is 
defined. An estimate of the maximum rate of growth versus dimensionless wave- 
number is found. The theoretical results are compared with numerical computations 
and laboratory experiments of other authors. 

1. Introduction 
Stability of stratified shear flows in an inviscid incompressible fluid of variable 

density is of considerable theoretical and practical interest for hydrodynamics, 
oceanography, geophysics, physics of atmospheres, etc. Calculation of eigenvalues of 
the singular Taylor-Goldstein equation generalizing the well-known Rayleigh equa- 
tion for the case of a stratified fluid presents certain difficulties in solving this problem. 
Only a few examples of shear flows with a simple configuration are available when 
the Taylor-Goldstein equation is solved analytically (Drazin k Howard 1966 ; Turner 
1973 ; Gossard & Hooke 1975). Numerical solutions are most commonly used, but they 
are also rather laborious (Hazel 1972). I n  this situation, various integral estimates 
acquire great importance, for they enable one to obtain sufficient conditions of 
stability or instability (Yih 1974) and define a possible range of parameters for 
growing perturbations in the case of instability. Important results in this direction, 
widely used now by oceanographers and specialists in atmospheric physics, have been 
obtained by Miles (1961) and Howard (1961). Later, Howard’s semicircle theorem, 
according to which the complex wave velocity for any unstable mode lies inside the 
semicircle defined by the maximum and minimum velocities of the main flow, was 
refined by Kochar & Jain (1979). According to  their results, the complex wave 
velocity for unstable modes lies in a semi-ellipse whose major axis coincides with the 
diameter of Howard’s semicircle, while its minor axis depends on the minimum 
Richardson number J,, = min [N(y)/U‘(y)]2, where U(y) is the velocity of the parallel 
flow oriented along the z-axis, N ( y )  = [gp]; is the Brunt-Vaisala frequency, g is the 
acceleration due to  gravity, and p = - p ’ ( y ) / p ( y )  is the logarithmic derivative of the 
density profile. However, neither Howard’s theorem nor its generalization by Kochar 
& Jain take into account the dependence of the size of the instability region on the 
perturbation wavenumber. At the same time, i t  is known that this dependence is quite 
substantial (Drazin k Howard 1966; Turner 1973; Gossard & Hooke 1975). For 
example, even in the ‘most-unstable’ case J,, = 0, only perturbations with wave- 
numbers k 5 l /h  can grow (h  is the characteristic thickness of the shear layer) and 
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perturbations with a = kh z 0.5 have the maximum rate of growth. Howard (1961) 
gave the upper limit for the imaginary part of the wave velocity, which takes into 
account dependence on both the wavenumber and the flow parameters. This estimate, 
however, does not enter into the theorem, but only supplements it.  

This paper gives a further refinement of the Howard-Kochar-Jain theorem. A basic 
inequality for arbitrary velocity and density profiles is derived in $ 2 .  This inequality 
generalizes results of the previous investigations (Howard 1961 ; Kochar & Jain 1979) 
and comprises parameters such as the Richardson number J,, and the wavenumber 
k of the unstable mode. This enables one to  narrow the possible range of phase velocity 
of unstable modes, as well as to obtain the estimates of the maximum rate of growth 
kCi versus J,, and k .  I n  fj3a generalization of Howard’s (1961) inequality is given for 
estimation of the maximum EC,. The obtained relation (12) takes into account the 
total thickness of the fluid layer with velocity shear. Numerical computations (Hazel 
1972) show that in the presence of external boundaries the instability region in the 
(J,,, a) plane may change essentially, which agrees with our formula (12). Section 4 
deals with some particular flow profiles, among which is a hyperbolic-tangent profile 
frequently used in practical calcula.tions. For these profiles we refine the formerly 
obtained boundaries of instability regions. Section 5 presents comparison of our 
resuks with the results obtained by Howard (1961) and Kochar & Jain (1979), as well 
as correlation of the estimate of the rate of growth versus wavenumber with the 
numerical computations (Hazel 1972) and the laboratory data (Scotti & Corcos 1969). 

2. Basic results for arbitrary velocity and density profiles 
The basic equation describing small perturbations in a stratified shear flow (the 

Taylor-Goldstein equation) can be readily obtained from the linearized Euler 
and continuity equations, assuming that all the variables are proportional to  
exp [ ik ( z - c t ) ] .  For vertical deviation of the constant-density line from the mean 
position ~ ( x ,  y, t )  = F(y)exp [ik(z-ct)] i t  has the form (Miles 1961) 

(1) 

With the boundary conditions F(0) = F ( H )  = 0 and a given wavenumber k, the wave 
velocity c in (1) is the eigenvalue of the problem considered. To obtain the upper limit 
of c (which is of particular importance for analysis of growing perturbations when 
c is complex and has a positive imaginary part), it’ is expedient to use an integral 
equality obtained from (1) by multiplying i t  by the complex conjugate F* and 
integrating over the flow cross-section for the boundary conditions given above. 
Combining the real and imaginary parts of this integral equation, and introducing 
ingenious manipulations, Howard (1961 ) obtained an inequality 

[p( U-c)’  F’]’+p[N2(y)-k2( U-c)’]  F = 0. 

where a = min U(y), b = max U(y). He dropped the second positive term (thus 
completely neglecting density stratification) and derived the semicircle theorem. 
Kochar & Jain (1979) retained the last term in (2) ,  relating it to 1 = jp[ l  F’ l2 + k2 I FI2],  
and therefore took account of flow stratification. However, in both cases the final 
result did not contain the wavenumber k, since in all the intermediate stages i t  entered 
only into the positive term I ,  which was supplementary and was dropped in the final 
inequalities. 
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The present paper gives the estimate of the second term in inequality ( 2 ) ,  following 
the same pattern as suggested by Kochar & Jain but retaining, where possible, k in 
its explicit form. For this we use the imaginary part of the integral equation for the 
function G(y) = [ U ( y )  -el: F(y), which readily follows from ( 1 )  (Howard 1961 ; Kochar 
& Jain 1979): 

Taking into account the relation between the functions G(y) and F(y) ,  the following 
inequality can be written : 

Using this inequality, one can readily obtain from (3) an integral relation 

(1 -4Jo)B2  2 B2+E2+k2D2-  plU’)IFIIF’I, s 
where 

D2 = s p /  U-cl [PI2. 

In  the analogous inequality obtained by Kochar & Jain the terms E2 and k2D2 are 
combined in one; as a consequence dependence on the wavenumber vanishes in the 
final result. In our paper we do not combine the terms, and a t  this stage the 
wavenumber k appears in the inequality. 

We now transform (5) using the Cauchy-Bunjakowski-Schwartz inequality to 
obtain the following estimate : 

Now (5) can be rewritten as 

E2-2BE+4JoB2+k2D2 < 0. 
1 

Solving this inequality with respect to E ,  we obtain 

B -  (B2 - 4J0 B2-  k2D2): < E < B + ( B 2 -  4J0 B2 - k2D2)?. 

Since we take interest only in the upper estimate for E ,  we get 

E2+k2D2 < 2B2 

Let us estimate the relation 

(7)  
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We should take into account the fact that  
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E 2 + k 2 D 2  2 ci p(jF'12+k21F12), s 
With allowance made for these relations, (7 )  can be rewritten in the form 

The estimate of the last term on the left-hand side of ( 2 )  yields 

Substituting (8) and (9) into ( 2 ) ,  we finally obtain 

a+b b-a 2 J ,  c: 1 [ (cr-Ty +"-(T) + 1 - 2J0 + [ 1 - 4J, - 4k2c;( Ukax)-2]t 

x jp(lP'12+k21F12) < 0. 

Since the integral is definitely positive, the Howard-Kochar-Jain theorem can be 
generalized as follows : 

I n  the complex plane (cr, ci) this inequality restricts the range of the wave velocity 
and the form of the limiting curve explicitly depends both on the minimum 
Richardson number J ,  and on the wavenumber k of the perturbations. At k = 0 the 
result of Kochar & Jain follows from (lo), and the limiting curve takes the form of 
a semi-ellipse whose minor axis in the direction of ci depends on J,.  At J ,  + O  the curve 
reduces to Howard's semicircle. At the same time, as seen from (lo), in the general 
case k + 0 , O  < J ,  < 0.25 the range of ci according to (10) always lies within Kochar 
& Jain's semi-ellipse. 

3. Estimation of the rate of growth in the presence of external boundaries 

negative radicand involves the condition 
One more important relation follows explicitly from (10) : stipulation of a non- 

(11)  k2c; 6 Uza,(a - J,), 
which, in fact, sets additional restrictions upon ci. This condition was first obtained 
by Howard (1961), but did not explicitly enter into the semicircle theorem. However, 
it can also be refined taking into account external boundaries of the flow. The 
inequality ( 1 1 )  is derived from (3),  if the term Sp(G'l2 is dropped on the left-hand 
side and the value 

is taken outside the integral sign on the right-hand side of the equation. If the 
integration is accomplished in finite terms, e.g. between 0 and H ,  the dropped term 
may be estimated using a known relation for continuous functions from the space 
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L,(O, H )  which satisfy zero boundary conditions (Joseph 1976) : 

I G l 2  dy < H” 
7c2 

I G l2 dy . 
Taking into account that 

j;PlGl2dY 2- Pmin J H I G 1 2 d Y  o 2- Pmin n2 
Pmax H2 
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and 

we obtain from ( 3 )  

Assuming that H - t  00, (12 )  yields the result ( 1 1 )  formerly obtained by Howard. I n  
the general case, however, a t  finite H ( 1 2 )  gives additional information about the 
external boundary effect on the rate of growth of shear instability. As seen from ( 1 2 ) ,  
with decreasing H the rate of growth decreases in conformity with the numerical 
computations (Hazel 1972). 

4. Further refinement of the results ($2) for specific velocity profiles 
The general results obtained in $ 2  apply to arbitrary density and velocity profiles 

for a stratified flow. I n  a number of particular cases, however, parameters of growing 
perturbations can be refined to a greater extent. To illustrate this, i t  should be recalled 
that the apparent inequality 

o > S(U-a) (u -b )&=Suz&-(a+b)sUQ+abSQ 

plays the central role in proving Howard’s theorem. Here Q = p[ IF ’ I2+  k2 
Substituting the integrals (Howard 1961) 

c c c c 

we obtain ( 2 ) ,  which yields Howard’s result after dropping the last term o 
left-hand side. The closer the right-hand side of (13 )  is to its upper limit of zero, the 
more exact is the estimate of the (cr, ci) parameter region for growing perturbations. 
For this purpose, we decrease the absolute value of the integral in ( 1 3 ) ,  substituting 
8 bv a smaller non-negative function 

p[IF’I-k(F1]2 = Q-ZkpIFJ IF’I. 
It gives 

0 > (U-a ) (U-b)p [ lF’1 -kIF1]2  = s ( U - a ) ( U - b ) Q  s 
-2k (U-a ) (U-b)p lFI IF’ )  = s U z Q - ( a + b ) { U Q  s 
+ ab sQ + 2k j[ (9)’ - ( U  p I FI I F’ 1 .  
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Using (14) 
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0 2 [ (c, -Ty a+b + c f - ( q y ]  JQ + J P P  I FI2 

+ 2 k ] [ ( q ) 2 - (  U-?)’]plFI ]PI, (17)  

we obtain an inequality that generalizes (2) and contains an additional finals term 
larger than zero. Neglect of the final term only makes the inequality (17) stronger, 
Howard’s and Kochar & Jain’s results, as well as those presented in $2, are derived 
from this inequality in this case. 

We now estimate the third term in (17),  substituting it either by an equivalent 
expression or by the one with a smaller absolute value. For this purpose, ( 5 )  can 
be written in the form 

Since I U-cl 2 ci and 1/1 U-cl 2 l / ( b - a ) ,  (18) may be rewritten in the form 

When the condition 

is fulfilled, where h is a certain constant with the dimensions of length, the inequality 
(1 7)  can be strengthened expressing the last component in terms of the integral j Q 
with the help of (19). Unfortunately, validity of (20) in the general case has not been 
proved. However, one can readily distinguish the flow profiles at which relation (20) 
is fulfilled. In  particular, equating the integrands on the left- and right-hand side of 
(20), we obtain a differential equation for U(y): 

dU 2 a+b 

This equation is readily solved; as a result we obtain 

U(y) = k[T+r$)th(h-;z)]. a+b Y 1  

Here h is used in the sense of the characteristic thickness of a shear layer. This profile 
is often used in numerical computations of shear-flow stability, since its form provides 
a good approximation to actually observed flows (Hazel 1972; Turner 1973; Gossard 
& Hooke 1975). We may state that (20) is fulfilled for the profiles (22) or smoother 
ones, i.e. profiles for which 

2 b+a 
b-a 

For these profiles, (17),  with the use of (20), takes the form 

0 2  {( c,-- b ) 2 +  [ci+Kh (%)I2- (1  + kh) (y)’} 14?+ (1  + kh) ~ p N Z I p I 2  
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FIGURE 1 .  Howard’s semicircle (a = kh = 0) and the segment of the circle (a! > 0) 

described by (24). 

Dropping the last term in (23), we obtain a generalization of Howard’s theorem for 
the ‘most-unstable’ case when N2 = 0 :  

This implies that  at k = 0 the range of (cr, ci) is restricted to  a semicircle with a radius 
i ( b - a ) .  At k =I= 0 the semicircle transforms to a segment of the circle with a radius 
$(b--a) [1+  ( kh )2] i ,  but i t  always rests on the points a and b located on the c, axis 
(figure 1). Taking into account the final term, and using its estimate made in $ 2 ,  we 
obtain an expression for the boundary of the region (c,,ci) which depends on the 
Richardson number, as well as on the perturbation wavenumber: 

(25)  

A more detailed analysis of this inequality is given in $5.  Here we can note that the 
range of (cr, ci) defined by (25)  is confined not only to Howard’s semicircle and Kochar 
& Jain’s semi-ellipse but also to the region defined by (10). 
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I 1 I ,  
0 0.5 ’ CdU, 

FIGURE 2. Dependence of the complex wave-velocity range for growing perturbations on the 
dimensionless wavenumber a, plotted using (26) at Jo = 0.2 (the curves are symmetrical with 
respect to the c, axis). The dashed line shows Howard’s semicircle, and the heavy curve is given 
for Kochar t Jain’s semi-ellipse. 

= O  
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0.24 

FIGURE 3. Estimates of the maximum growth rate aci versus the wavenumber a at different Jo. 

5. Discussion 
To analyse the obtained results, consider some smooth symmetric profiles for which 

a = - b = - U,. Introducing dimensionless variables 6 = y / h ,  a = kh, we rewrite (10) 
in the form 

2J0 (;3;aJi] c: % (26) 
1-2Jo+ 1-4JO-4a2c: ~ [ 

c;+ 1 +  i 
Figure 2 gives an example of the curves defining the range of c a t  different a and 
Jo = 0.2. The breaks of the curves indicate that the radicand in (26) becomes negative 
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uo 
FIQURE 4. Range of c as function of a for the velocity profile of the type (22) plotted using (27) 
a t  J ,  = 0.2. The dashed line is given for Howard’s semicircle, the heavy line is for Kochar & Jain’s 
semi-ellipse. 

0.25 

0 0.5 
FIGURE 5. Estimates of the maximum growth rate versus the wavenumber for the velocity profile 
of the type (22) at different J,. The dots are given for the experimental data (Scotti & Corcos 1969). 
The smooth curve in their vicinity presents the computed shear flow with a similar velocity profile 
(Hazel 1972). 

a t  sufficiently large a. Therefore the additional restriction stipulated by (1  1 )  occurs 
in the imaginary part of the wave velocity. The heavy line is Kochar & Jain’s 
semi-ellipse a t  a = 0, the dashed line is for Howard’s semicircle. As seem from 
figure 2,  the maximum of the imaginary part of the wave velocity depends on the 
dimensionless wavenumber as well as on J,. Dependence of the maximum growth rate 
on the wavenumber is of great importance for practical calculations and applications. 
The inequalities (10) and (1  1) enable us  to estimate the dependence of the maximum 
growth rate on a. The family of broken lines in figure 3 represent the estimates of 
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aci versus a a t  different J,. The growth rate in the region of small a increases with 
a,  reaches its maximum and remains constant. Unfortunately, the expressions 
obtained do not allow us to explain the decrease in the growth rate after reaching 
its maximum that usually occurs in experiments and numerical computations of 
instability in smooth profiles (Drazin & Howard 1966 ; 'I'urner 1973 ; Gossard & Hooke 
1975). 

We now consider a velocity profile of the type (22), assuming that density is an 
arbitrary smooth function of the y-coordinate. We rewrite ( 2 5 )  in dimensionless 
variables 

2JJ1 +a)c: 
c; + (Ci  + < (1  +a2) u;. 

1-2J,+[1-4J,-4a2c~ ~ J T ~ ] ; '  

The range of (cr, ci) defined by (27) is shown in figure 4 for different values of a and 
J ,  = 0.2. As seen in figure 4, breaks of the curves stipulated by ( 1  1 )  are also available 
here, but they appear a t  a larger than in (26). It is easily seen that the curves 
corresponding to equal values of a are located in figure 4 lower than in figure 2. Figure 
5 shows estimates of the growth rate as a function of the wavenumber for the example 
under consideration a t  different J,. A similar velocity profile was observed in 
laboratory experiments (Scotti & Corcos 1969) and used in numerical computations 
(Hazel 1972). The dots in figure 5 mark the experimental data obtained by Scotti 
& Corcos a t  J, = 0.07 ; the smooth curve in their vicinity was computed by Hazel. 
The estimate for this ease described by (27) is given by a heavy line. Here we could 
not explain the decrease in the growth rate a t  large a either. Within the frames of 
the obtained formulae, all the curves at a+m tend to their asymptotic values 
q / U ,  6 0.25- J, defined by (11) .  The comparison showed that the maximum 
growth rate estimated by ( 1 1 )  is about three times larger than that obtained in the 
numerical computations for different smooth profiles (Miles & Howard 1964; Hazel 
1972). 

The authors would like to thank N. Krivatkina for help in translation from Russian 
into English. 

REFERENCES 

DRAZIN, P. G. & HOWARD, L. N. 1966 Adv. Appl. Mech. 9, 1-89. 
GOSSARD, E. E. & HOOKE, W. H. 1975 Waves in the Atmosphere. Elsevier. 
HAZEL, P. 1972 J .  Fluid Mech. 51, 39-61. 
HOWARD, L. N. 1961 J .  Fluid Mech. 10, 509-512. 
JOSEPH, D. D. 1976 Stability of Fluid Motions. Springer. 
KOCHAR, G. T. & JAIN, R. K.  1979 J .  Fluid Mech. 91, 489-491. 
MILES, J. M. 1961 J .  Fluid Mech. 10, 49C508. 
MILES, J.  W. & HOWARD, L. N. 1964 J .  Fluid Mech. 20, 331-336. 
SCOTTI, R.  S. & CORCOS, G. M. 1969 Radio Sci. 4, 1309-1313. 
TURNER, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press. 
YIH, C.-6.  1974 In Nonlinear Waves (ed. 6. Leibovich & A. R.  Seebass), pp. 263-290. Cornell 

University Press. 


